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Simple formulae for the interaction energy between two molecules have been used for writing a program 
which evaluates the total interaction energy of the molecules in a crystal. These formulae appear as 
sums of atom-atom and, eventually, atom-bond and bond-bond contributions. The non-additivity of 
the polarization energy is taken into account, and a rough estimate of the third-order non-additive 
terms ('triple dipole') is introduced. A suitable modification of the formulae for short interatomic 
distances allows us to treat hydrogen-bond interactions as well. We present results for the crystals of 
CH4, CO2, C6H6, and C6HsNO2. The energies calculated for the experimental geometry are in good 
agreement with experiment. For CO2 and C6HsNO2 minimizations of the computed energy (with respect 
to unit cell parameters and orientation and position of one molecule in the cell) were performed and it 
was found that the experimental configuration actually was very close to a minimum. The configurations 
of neighbour molecules in the crystal are compared with the optimal configuration of a binary complex, 
and it appears that, for non-hydrogen-bonded molecules, significant differences between these con- 
figurations may occur. Finally, for nitrobenzene several local minima seem to exist on the energy 
hypersurface; the minimum corresponding to the known experimental geometry appears to be the 
lowest, but only by a small amount. 

1. Introduction 

An extensive compilation of t h e  stacking patterns 
observed in the crystalline state for nucleic bases, either 
isolated or in combined form (nucleosides and nucleo- 
tides) was recently given by Bugg, Thomas, Sundara- 
lingam & Rao (1971). Stacked configurations of the 
purine or pyrimidine rings appear in all these crystals, 
but the overlap is almost always partial. Trying to 
explain this partial stacking in terms of binary inter- 
actions only (i.e. the interaction between the two 
partially stacked bases), Bugg et al. were led to suggest 
that these partially stacked patterns could be under- 
stood only in terms of the polarization contribution 
[indeed, by using the dipole approximation (see e.g. 
Claverie & Rein, 1969) for the electrostatic and dis- 
persion energy, they found that these two contributions 
could not explain the observed pattern]. However, 
when actual computations of the various contributions 
to the intermolecular interaction energy are performed, 

the polarization contribution never appears as the 
prominent one [as concerns stacked configurations, see 
e.g. Claverie, Pullman & Caillet (1966) (stacked purines 
and pyrimidines); Caillet & Pullman (1968) (tetra- 
methyl uric acid and aromatic hydrocarbons); Man- 
tione (1968, 1969 a,b) (charge transfer complexes: 
tetracyanoethylene and aromatic hydrocarbons)]. In 
all these cases several stacked configurations were tried 
(by moving the molecules in parallel planes) in order 
to explore roughly the energy surface: not only the 
absolute magnitude of the polarization contribution ap- 
peared markedly smaller than the magnitude of the 
other contributions, but the same property appeared to 
hold also for the variations of the different contribu- 
tio0s: therefore, it may not be argued that the polariza- 
tion term, although small by itself, could play a 
prominent role (by its variation) in the determination 
of the minimum-energy configuration. 

Two other features, relevant for the present problem, 
appeared in these calculations of binary complexes: 
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(I) The simplest long-range formulae (based upon 
the dipole-dipole approximation) cannot be used safely 
in the equilibrium region (3 to 4 A between the closest 
atoms for organic molecules); for stacked molecules, 
the variation of the electrostatic energy, when one of 
the molecules is translated in its own plane, is incor- 
rectly described by the dipole-dipole approximation: 
the dipole-dipole energy decrease when the molecules 
depart from the stacked configuration corresponding 
to dipoles antiparallel to each other, while the more 
correct monopole approximation (interaction between 
atomic net charges) does not behave in such a simple 
way: small decreases or increases of the electrostatic 
interaction occur for displacements of 1 A from the 
position corresponding to antiparallel stacked dipoles. 
This situation actually occurs for two adenine mole- 
cules (Caillet & Claverie, 1974). As a consequence, as 
concerns the electrostatic energy, it may not be argued 
that a completely stacked configuration is markedly 
preferred: this is true for the dipole-dipole approxi- 
mation (which is not reliable in the range of equilibrium 
distances), but not for the more exact monopole-mono- 
pole approximation. 

(2) If we now consider the total interaction energy, 
a somewhat analogous situation appears to hold: with 
the long-range formulae (dipole-dipole, dipole-in- 
duced dipole, London formula for the dispersion 
energy*), a minimum corresponding to the stacking 
of the antiparallel dipoles is obtained (because all 
energies have their minima for this position); on the 
contrary, with more refined approximations suited for 
the distances of interest, no deep minimum occurs: the 
energy surface (corresponding to the two-dimensional 
displacements of one molecule in a plane parallel to the 
other) is rather flat in a region extending to at least 1 A 
around a position of complete stacking; it is even pos- 
sible that several small minima occur in this region. It 
may also happen that the energy varies very little with 
respect to angular variables [benzene, which is reported 
in §3(C) below, is a striking example]. 

The consequences of such a situation concerning the 
configuration of molecules in crystals gre clear: if the 
minimum of the interaction energy (with respect to 
displacements of the molecules around the configura- 
tion of the binary minimum) is flat instead of deep, the 
position of the minimum will be highly sensitive to any 
external perturbation, for example the presence of 
neighbour molecules in the crystal. Therefore, no direct 
contradiction a priori exists between the existence of 
partially stacked configurations in crystals and more 
completely stacked configurations in binary complexes; 
a quantitative study appears necessary to clear up the 
point. 

Ux U2 0q0c2 * Eatsp = -k-~j12~ U£ -R6 where R is the distance between 
the two molecules (for example between the two points where 
the dipoles are placed). 

More recently, Motherwell & Isaacs (1972) at- 
tempted to make some intermolecular energy calcula- 
tions relevant to this problem. They were interested in 
crystals of various purine nucleosides, but they made 
their calculations for columns of molecules only (and 
not for a real three-dimensional lattice). 

Essentially, they found that, in such columns, the 
bases alone stack more completely than the nucleo- 
sides, and they concluded that the partial stacking was 
due to the presence of the ribose. But as we have 
pointed out previously (Caillet & Claverie, 1974) this 
cannot be the unique cause of partial stacking since it 
is also observed in three-dimensional crystals of nucleic 
acid bases. 

In this previous work, we reported a detailed study 
for the case of adenine and showed how different 
stacking patterns appeared in binary complexes and 
columns on the one hand, and in the crystal on the 
other. In the present work, we shall describe in detail 
our method for calculating the intermolecular inter- 
action energy of a crystal and we shall present some 
applications to crystals of ordinary molecules (methane, 
carbon dioxide, benzene, nitrobenzene); among other 
results, it will be made clear that the differences be- 
tween configurations in binary complexes and in 
crystals are a rather general phenomenon, by no 
means special to the molecules of biochemical interest 
like those considered by Bugg et al. (1971). 

2. Method 

(a) Basic formulae 
We evaluate the interaction energy as the sum of 

three long-range contributions (electrostatic, polariza- 
tion and dispersion) and a short-range repulsive con- 
tribution. 

Information about these formulae may be found in 
previous papers (Huron & Claverie, 1969, 1972, 1974; 
Claverie, 1973). Here we shall briefly describe the 
formulae and parameter values as used in the present 
work for molecules close to each other. For molecules 
separated by a distance rather large with respect to 
their own dimensions (this case evidently occurs in the 
case of crystals), simplified formulae may be safely 
used (the exponentially decreasing short-range term is 
neglected and the long-range terms are evaluated ac- 
cording to the dipole approximation). 

(a) Electrostatic energy 
For the calculation of this term, we need net atomic 

charges of the two interacting molecules. This energy 
is given by 

E°°=~',"'~ (2~°'°~R,J (1) 

We note that y}m) extends to all objects i (here the 

atoms) belonging to molecule m; 0i and Q1 are the net 
charges of atoms i and j of molecules (1) and (2). 

A C 31A - 4 
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The net charges: The net charges on the different atoms 
of  a molecule are calculated with the Del Re (1958) 
method for the a charges and with the H~ickel method 
for the z~ charges (Berthod & Pullman,  1965); when the 
charges are evaluated by a different method, this is 
indicated in § 3 for the molecule studied. 

(b) Polarization energy 
(~) Bond polarizabilities 

When we consider two molecules, the polarization of  
molecule (1) by molecule (2) is given by 

Epol(2-. 1)---- --½ ~ (l')~(2)h~u ...,,v ,,~(:~) (2) 
U 

where ~ z )  is the electric field induced by molecule (2) 
at some fixed point* of  the bond u of  molecule (1). 
For  the calculation of  ~2) ,  molecule (2) is represented 
by the same set of  charges (and eventually dipoles) 
which is used for the calculation of the electrostatic 
energy, b, is the polarizabili ty tensor of  the bond u of 
molecule (1), and in a local coordinate system whose 
x axis is directed along the bond, it is of  the diagonal 
form 

0 00) 
b = 0 br  (3) 

0 0 by 

where b,,  br  and by are the principal polarizabilities of  
the bond;  for most bonds, b r = b v  (see e.g. LeF~vre, 
1965) and when the two polarizabilities are not equal, 
we replaced them by their mean value in order to 
simplify the calculations. 

(fl) Atom polarizabilities 
The calculation of the polarization energy as a sum 

of  bond contributions gives rise to a purely practical 
problem, namely a substantial  increase in computat ion 
time, due to the fact that it is necessary to compute all 
intermolecular  a tom-bond  distances besides the a tom-  
atom distances which are, in any case, necessary for the 
calculation of the electrostatic energy. Owing to the 

* In all our previous work about molecular interactions, 
we used the middle of the bond. In the present work, we also 
used a tentatively refined choice: for every bond, we consider 
the number nb of 'bonding electrons' (two for a single bond, 
four for a double bond . . . .  ) and the numbers nct, nc2 of 'non- 
bonding electrons' from the bonded atoms (1 and 2) that we 
attribute to the bond. nc~ is defined in the following way: we 
take the total number N~ of 'non-bonding electrons' of atom 1 
(core-l-lone pairs) and we share equally this number between 
the v bonds starting from this atom: net=N1/vl for each of 
these bonds. Then, noting A~ and Az the points where the 
atoms 1 and 2 are placed, we consider the middle M of A~A2, 
the middle P~ of A~M and the middle Pz of MAz; we now 
define the centre of mass P of M, P~ and P2 with the respec- 
tive weights nb, no1 and nc,. We may use this point P for cal- 
culating the electric field which will polarize the bond. For 
atoms beyond the first row, however, this choice may over- 
estimate the contribution of the core electrons, which become 
more and more numerous; it would therefore be more cau- 
tious to use a reduced 'effective' number of core electrons in- 
stead of the true one. 

large number  of intermolecular  interactions which are 
to be calculated for the evaluation of  the crystal energy, 
it becomes essential that the computat ion t ime of each 
interaction is reduced as much as possible. To achieve 
this, it would be interesting to make use of the a tom-  
atom distances only. As concerns the polarization 
energy, this means  that the polarization energy of  a 
molecule will be calculated as a sum of a tom polariza- 
t ion contributions:  

Epo~(1) = - ½  ~ e,(~,)z 
i 

where ~ i  is the electric field created at the atom i of 
molecule (1) by all other molecules [only molecule (2) 
in the case of a b inary complex], and ei is the mean  
polarizabili ty attributed to a tom i. ~ i  is calculated as 
indicated in §(e) above. As concerns the atomic 
polarizabilities, we have not tried to use directly a 
systematic of  increments because it has been recognized 
for a long t ime that such atomic polarizabili ty incre- 
ments are much less transferable (from one molecule to 
another) than bond increments. We therefore continue 
to use these bond polarizabilities, and, for each mole- 
cule, we calculate f rom them atomic polarizabilit ies 
according to the following procedure: 

Let u be the bond between atoms i and j ,  and e,  the 
mean polarizabil i ty of  this bond [e,,= ( b , , , + b , r +  
b,v)/3]. We divide this polarizabili ty e,  into two parts 
e,,~ and ~,,~ which will be attributed respectively to 
atoms i and j .  This part i t ion is done according to 
weights attributed to atoms, these weights being ob- 
tained f rom the number  of  electrons in the following 
way: let N, be the number  of  electrons involved in the 
bond u (2 for a C - C  bond, 4 for a C - C  bond, 3 for a 
C_~z-C bond in benzene; more complicated re systems 
will be treated below; let N~ (or N~) be the numbers  of 
electrons of atoms i (or j )  which are not involved in 
bonds, the two ls  electrons being excluded (thus, for 
second-row atoms: C, N, O, F, N~ would be equal to 
the number  of lone-pair electrons; see below for the 
case of heavier atoms);  and let v~ (or v j) be the number  
of atoms bonded to the atom i (or j ) .  We consider that 
the N~ electrons are equally distributed between the v~ 
bonds t  starting f rom i (and similarly f rom j ) ,  and we 
share equally the N, bonding electrons between i and j :  
thus, for the bond u, we attribute to a tom i 

n,. ~ = N,/2 + N~/v, 

electrons, and similarly nu, j electrons to a tom j :  

n,,,.i= N,/2 + N~/vj . 

Then, the mean bond polarizabil i ty ~, is shared be- 
tween atoms i and j according to the weights n,, i and 
n,. j, so that we obtain the atomic polarizabili ty incre- 
ments due to the bond u: 

* We use here the word 'bond' with the meaning 'pair of 
bonded atoms', i.e. whether the chemical bond is single, 
double, triple, aromatic, we count it as one bond. 
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nit ,  i 
O~ l . u ~ OC u 

n u ,  t q - n u ,  j 

n u ,  j 
o~ g, u - -  - -  - -  O~u . 

n u ,  i q -  n u ,  j 

Then the total atomic polarizability of each atom is 
obtained by summing the increments thus obtained 
from the bonds which start from the atom considered: 

0~i~ ~ ~i,u 
u E i  

where u~i means that the summation is extended to the 
bonds starting from the atom i. 

Remark 1. Evaluation of  the number N, of  bonding 
electrons in the case of  conjugated systems (delocalized 
n bonds) 

There is no problem for the a bond, which contri- 
butes N,~=2 electrons to N,. For getting N~, we 
proceed in the same way as we did for the non-bonded 
electrons, i.e. we take the number N~ (or Nff) of n 
electrons that atom i (or j )  gives to the 'pool' of the n 
system, and we share this number equally between the 
v~ n bonds which start from atom i (and similarly for 
atom j). We obtain in this way for the bond u between i 
and j :  

N~=N~ + N~=N~I+(N'I/v'Z + N'~/v'~) . 

Examples" (a) bond N'(S)- - C(4)t in adenine N~= 1, \ ', 
v~=2; N ] =  1, v ] = 3 ;  N~4)=½+½=0.833. . .  

As concerns the other numbers implied in the calcula- 
tion of the atomic polarizabilities, we have N~ra4)=2, 
NS=2, v3=2, N~=0, V4=3 , hence N ,=2 .833 . . . ,  n(34),3 
=1.4166. . .  +1 and n(34).4 =1.41666. .. (b) bond 

~,.. j J  
c(s) . . . .  N(9) in adenine 
/ \ 

H H 

N I = I ,  v~=2; N~=2,  v~=2 
_ _  2 N ( 8 9 ) - - ½ - t - ~ =  1"5; N ( 8 9 ) = 3 " 5  

N~=0, v8=3; N~=0, V9=3 
n(89),8 = n(89),9 = N(89)/2 = 1"75. 

Of course, more refined choices could be made: thus, 
for the numbers N~, atomic n electronic populations, 
or, for the numbers N~, bond n electronic populations 
(Diner, 1967) could be used. But the simple procedure 
given above appears sufficient in practice, because the 
final weights are rather insensitive to slight modifica- 
tions of the n population. In the case of the -NO2 group 
of nitrobenzene, for example, we used Nx~ = 1 and N(] = 
1.5, but the use of the more standard numbers N~=2  
and N~= 1 does not lead to widely different final 
results. 

Remark 2. 'Effective' number o f electrons for the atoms 
beyond the second-row 

For such atoms (S, P and the halogen atoms CI, Br, 
I) some caution is necessary in order to define an ef- 
fective number N c of non-bonded electrons. To con- 
sider only the non-bonded valence electrons seems in 
sufficient, since all halogen atoms, for example, would 
then receive the same number NO; but to consider all 
non-bonded electrons except the ls would give too 
high values of N c, because the inner-shell electrons 
certainly contribute less to the polarizability than those 
of the outer shell. The following recipe may be pro- 
posed: for analogous bonds, the atomic contribution 
to the polarizability will be supposed constant; thus, 
in the series of bonds C-H, C-CI, C-Br, C-I, the atomic 
contribution for C will be, according to the previous 
rules, ~c=C~c_n/2; then we shall use ax=~c-x--~c 
(where X =  CI, Br or I). Similarly, C-S may be con- 
sidered analogous to C-O and C-P to C-N. In the 
applications that we have made up to now, such heavier 
atoms were not involved, so that the proposed recipe 
has not been checked. Further work will be necessary 
to decide whether or not it is satisfactory. 

For a binary complex, the total polarization energy is 

• Epo, = E, , , ,~ . . . .  ~) + E ~ , o . ~ - . .  

where Epolc2-. ~) is the polarization energy of molecule 
(1) by molecule (2). 

(c) Dispersion and repulsion energy 
In previous work involving calculations of inter- 

molecular interaction energies (Huron & Claverie, 
1969, 1971; Mantione & Daudey, 1970) we used two 
kinds of approximate formulae for the evaluation of the 
dispersion term: 

(1) a sum of bond-bond interactions (each calculated 
by a London-type formula using bond polarizabilities). 

(2) a sum of atom-atom 1/R 6 terms, according to 
the semi-empirical formula proposed by Kitaigorodskii 
(1961a). Several improvements were brought to these 
formulae, involving comparison both with experimental 
results and with values calculated from the London- 
type formula (Huron & Claverie, 1969, 1972, 1974). 

The Kitaigorodskii formula also involves a repulsion 
energy calculated as a sum of atom-atom terms, and 
from preliminary calculation of the sublimation energy 
of some crystals [methane, carbon dioxide, benzene, 
nitrobenzene: see § III-2(a) below] it appeared that this 
repulsion energy was better fitted to the corresponding 
(atom-atom) evaluation of the dispersion energy than 
to the bond-bond formula (it must be appreciated that 
the number of close contacts in crystals makes the 
results rather sensitive to a correct fitting of the various 
contributions to the interaction energy). To derive a 
correctly fitted dispersion-repulsion formula on the 
basis of the bond-bond formula (for the dispersion) 
implies further research (a possibility would be to 
define atom-atom terms, starting from bond-bond 
interactions, in such a.way that these atom-atom terms 

A C 31A - 4* 
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give at long-distance results asymptotically equal to 
those of the bond-bond interactions). In the present 
work, we content ourselves with the Kitaigorodskii- 
type improved formula; indeed, we shall deal with 
molecules involving only H and first-row atoms 
(C, N, O), and the parameters that we have for them 
appear sufficiently reliable for obtaining useful results. 

This formula appears as a sum of atom-atom inter- 
actions: 

E K I T =  ~ ( 1 )  ~ ( 2 )  E(i,j) (4) 
j 

where each atom-atom contribution E(i,j) is the sum 
of a dispersion and a repulsion term: 

E ( i , j ) = k i k j [ - z A  + C exp ( - a z ) ]  (5) 

where 
z= R,j/ROj (6) 

and 
R°j= I/(2R w) (2/~') (7) 

where R w and R w are the van der Waals radii of atoms 
i and j (generally taken from Bondi, 1964). In the 
present work, we used the values: 

RW=l.2 A w - 1 . 7 A  R w - 1.77 A R c t a  I i pha  t i¢) - -  C ( a r o m a  t tc)  - -  

W __ O ( a r o m a t t c )  - -  • Rmaromatic)- 1-60 A R w - 1 "50/k 

As concerns the use of the geometric mean (7) instead 
of the arithmetic mean (2R w + 2R~/)/2 = R TM + R w, see 
Huron & Claverie (1969). The ratio A/C is fixed by the 
condition that the minimum of (5) (as a function of R) 
occurs for R ROj_ 13 o' = - ~-rR~j (see Huron & Claverie, 1969). 

The parameters ~, A and C are kept independent of 
the atomic species i and j. The values that we use 
presently are (Huron & Claverie, 1972) 

A=0"214 C=47× 103 ~=12"35. (8) 

They slightly differ from those (Huron & Claverie, 
1969) corresponding to the original value of Kitai- 
gorodskii (1961 a,b), because there was an error in the 
calculations upon which these original values were 
based (Huron & Claverie, 1972; Kitaigorodskii & 
Mirskaya, 1964). 

The parameters k~ depend on the atomic species; 
they are necessary to allow the energy minimum to 
have different values according to the atomic species 
involved (Kitaigorodskii, Mirskaya & Nauchitel, 1970; 
Huron & Claverie, 1974). The values used in the present 
work are 

k n = l  k c = l  kN=l '18  k o=1 .36 .  (9) 

Finally, we took into account the effect of variable 
electronic population on the repulsive contribution (of. 
Murrell, Kettle & Tedder, 1965; pp. 339-340): we 
introduced, for every atom-atom repulsive term, the 
multiplicative factor (1-o~IN TM) (1 V a t  -Qj /Nj  ), where 
N T M  is the number of valence electrons of the atom i 

and 0t its net charge (thus the factor is 1 for a neutral 
atom). We therefore have 

Ere,( i,j) = ( 1 -  o,/N TM) (1-offNva')k,k~C 
× exp (-~R~JR°j) . (10) 

This correction is rather small in most cases; it actually 
becomes noticeable for H atoms bonded to O or N 
atoms because they have a non-negligible positive net 
charge, while N vat= 1. 

(d) Case of the hydrogen bond 
The effect just described above decreases the repul- 

sion in the case of a hydrogen bond since the H atom 
has a positive non-negligible charge. This is not yet 
sufficient, however, to make the equilibrium distance 
short enough; a possible explanation of this situation 
is that the charge-transfer contribution becomes 
significant at distances shorter than the usual equili- 
brium distances. Now, this contribution varies ex- 
ponentially with distance and is attractive (negative 
sign). In order to represent this, we used at short 
distances (for the hydrogen-heavy atom interactions) 
a reduced repulsive term defined in the following way: 
we choose two distances R,, < RM; for R > RM, we use 
the normal constants A, C, ~; for R < Rm, we use modi- 
fied constants A', C' ,~ ' ;  and for Rm< R< RM we use 
interpolated values defined by 

K ( x ) -  K+ K' K -  K' 2 + - - 2 -  (0"375x5-1"25x3 + 1.875x) 

(11) 
where 

the polynomial P(x)=O.375xS-1.25xa+l'875x has 
been chosen so as to have vanishing first and second 
derivatives for x = + 1 and to take the values P ( -  1)= 
-1, P(1)= 1 [so that K(R) and its first and second 
derivatives are continuous, which is a convenient 
feature if minimization procedures involving deriva- 
tives are to be employed]. In (11), K represents one of 
the symbols A, C or ~. The values used in the present 
work are 

Rm=l '8  A RM=2"6/k 

A ' = A / 5  C '=C/2"7  e ' =  13"8. (12) 

These values were fitted to reproduce correctly the 
equilibrium distance and energy for the hydrogen bond 
between water molecules and between formamide 
molecules. It must be emphasized that the parameter A 
for the dispersion energy had to be reduced, too; this 
is in agreement with the theoretical analysis of Murell 
& Teixeira-Dias (1971), according to which the 1/R 6 
formula overestimates the dispersion term at short 
distances [owing to the penetration part of the inter- 
molecular integrals, which reduces their value with 
respect to their 1/R 3 (dipole-dipole) approximation]. 



J A C Q U E L I N E  C A I L L E T  AND P I E R R E  C L A V E R I E  453 

(B) Interaction energy for a crystal 
(a) Formulae 

For a crystalline array containing N molecules, the 
total interaction energy is 

N N N 
E =  ~ ~ ~ d +  ~ u~O, (13) 

p < q  p 

where -add represents the sum of the pairwise additive b~pq 

interactions (electrostatic, dispersion, repulsion) be- 
tween the molecules p and q, and u~ °~ represents the 
polarization energy of the molecule p in the electric 
field of all surrounding molecules (i.e. the polarization 
energy of each bond of the molecule p is calculated 
from the total electric field created by all other mole- 
cules on this bond). Now: 

N N N N 

~ ~'add=2-2 ~ ~ ' a d d  Upq Idpq . 
p < q  q C p  

When N becomes very large, the boundary effects may 
be neglected and, owing to the equivalence of all mole- 
cules in a crystal, ~ ,~d is the same for all molecules i, 

q C p  

and the same property holds for u~, °~. Hence, if we note 
that 

we get 

U add = ~ vpq//add Up°I= u~Ol, (14) 
q C p  

N uadd NUPO l + 

and the energy per molecule is 

E/N= 1uadd + U p°l . (15) 

Remark: The non-additive terms beyond second order of 
perturbation 

These terms are not completely negligible, but 
simplified formulae for them have not been worked out 
as thoroughly as for the first and second-order terms. 
Most works have dealt only with non-polar molecules, 
for which non-additive terms (similar to the second- 
order dispersion term) appear at the third perturbation 
order only (Axilrod, 1951; Kihara 1958; Kestner & 
Sinanoglu, 1963). In the present work, we have used 
the results of Kestner & Sinanoglu (1963) who evalu- 
ated this third-order non-additive term for a condensed 
phase (liquid or solid) and found a positive (destabi- 
lizing) contribution equal to 7 % of the absolute value 
of the (second-order) dispersion term in the case of 
methane. For polar molecules, the polarization term is 
the only non-additive term up to the second order, and 
its correct value is easily obtained, as indicated above, 
by using for each molecule the total electric field 
created by all other molecules (see Pullman, Claverie & 
Caillet, 1966, 1967). But there are also new terms at 
higher orders, and they will be, at least partially, non- 
additive. Unfortunately, such terms beyond the second 
order have been studied systematically only very re- 
cently (Stogryn, 1971), and no simplified formulae have 
been yet devised for them. We therefore did not attempt 

to evaluate them in the present work, and this intro- 
duces a slight supplementary uncertainty of the results 
in the case of molecules with non-negligible net charges. 

(b) Practical procedure for computation 
The crystal is built from a central cell in which the 

molecules are deduced one from another from the 
symmetry elements and the coordinates given in the 
literature. The building of the crystal is obtained by 
translations of the central cell along the three crystal 
axes so as to form a finite crystal which is approximate- 
ly a cube with the original cell at its centre. This is 
achieved by choosing some maximum number of layers 
in the crystallographic direction corresponding to the 
smallest edge of the unit cell and calculating the number 
of layers in the two other directions so as to get ap- 
proximately a cube. Layers are added until the con- 
vergence of the energy is obtained to a prescribed ac- 
curacy (the accuracy is defined as the ratio of the energy 
difference due to the last layer added divided by the 
total interaction energy). An accuracy of 10 -3 was 
obtained with four or five layers for all the crystals 
considered in this work. 

There are Arc molecules in the central cell. For the 
experimental crystal structure, all molecules are equiv- 
alent, thus it would be sufficient to compute U ~dd and 
U p°I for one of these Arc molecules; but when some 
molecules are displaced (for investigating the variation 
of the energy) the equivalence may cease to be rigorous. 
In the present work, we therefore computed U ada and 
U p°I for all Arc molecules of the central cell and took 
the arithmetic, mean. 

When molecule q is not very close to molecule p, it 
becomes legitimate to use the simplified formulae for 
the long-rang,~ interactions (based upon the so-called 
dipole approximation) and omit the calculation of the 
repulsion contribution (which becomes completely 
negligible as soon as the atoms are not in close contact). 
The electrostatic energy then reduces to the interaction 
between the molecular dipoles (we put the dipole at 
the middle of the segment joining the 'centre of mass' 
of the positive atomic net charges and the centre of 
mass of the negative ones; we shall call this point the 
'centre of force'). The dispersion energy is approxi- 
mated by replacing all a t o m . . ,  atom distances Rij by 
the distance R joining the 'centres of force' of the two 
molecules, thus 

A . 0 , 6  
Edisp = R6 kik j ( R i j )  (16) 

i J 

and the quantity 

~_,(*') ~_<a)kiki(R°j)6= ~_(P) ~(a)k,kj(4R~'R~') 3 
i j i j 

may be calculated once for all. 
Finally, as concerns the polarization energy, we cal- 

culate only the electric field created by the dipole of 
molecule q at the centre of force of molecule p, and we 
use this electric field for all the bonds of molecule p. 
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The use of these simplified long-range formulae 
results in considerable saving of computing time, 
especially because the molecules lying far from a given 
molecule p are much more numerous than those lying 
close to it. 

Our computer program calculates the energies u~,q 
from both sets of formulae (complete and simplified) 
and compares, for every new molecule q, the difference 
Aupq of these two values of up~ to the current total 
interaction energy Utot. As soon as IAuj, Jftotl is smaller 
than a prescribed threshold e for all molecules q of a 
cell, the distance D of the centre of this cell to the centre 
of the central cell is taken as a 'cutting distance', which 
means that, for every molecule q belonging to a cell 
whose distance to the central cell is larger than or equal 
to D, only the simplified long-range formulae are used. 

In practice, for a threshold e=0.5 x 10 -z, the long- 
range formulae were used in the second layer for the 
crystals considered. 

(c) Variation of  the crystal geometry and minimization 
procedure 

One of the main interests of a program computing 
the intermolecular energy of a crystal is, of course, 
the possibility of modifying the crystal geometry and 
searching energy minima. We have six parameters for 
the unit cell (a,b,c; a,fl,?) and six parameters for each 
molecule of the unit cell in the general case (three 
Euler angles defining the orientation of the molecule 
with respect to some centre chosen in the molecule, and 
the three coordinates of this centre). 

In the applications reported in §3, we did not leave 
all these parameters arbitrary, because this would have 
involved prohibitively long computation times: we 
left free at most the six unit cell parameters and the six 
parameters of one molecule in the unit cell, the other 
molecules of this cell being obtained according to sym- 
metry operations of the space group (experimentally 
known in all the cases that we considered). 

As the centre of the molecule, we chose the 'centre 
of mass' of the atoms, each atom receiving a weight 
equal to its atomic number (and not its true mass, so 
that our centre is slightly different from the true centre 
of gravity). 

For the Euler angles (~0, 0, ~u), we used the choice of 
Kemble (1937); let us denote Oxyz the initial coordinate 
system and OXYZ the final system, and let us introduce 

the notation ~(a, Or) for the rotation by an angle 
.._>. 

around an axis Or; we first perform on Oxyz the rota- 
--->- __>. 

tion ~(q~, Oz), which transforms Oy into Ou, which will 

be the node line (intersection of the planes xOy and 
.----> _ - ~  

XOY) and Ox into Ox'; then the rotation ~(0,Ou) 
---->- ~ ----> 

which transforms Oz into OZ and Ox' into Ox"; and 

finally the rotation ~ (~ ,  OZ) which transforms Ou into 

O Y and Ox" into OX. To sum up (the rotations are 

performed in the order from right to left): 

with 

and 

OXYZ = cg[Oxyx] 

--->. - . >  

~ = ~(~, o z ) ~ ( o ,  Ou)~(~o, Oz) 

.--->- ~ .----> -.->, --->. 

Ou = ~(~o, Oz)Oy, OZ = ~(0, Ou)Oz. 

When the rotations are considered in the reverse order, 
the alternative expression is obtained: 

v = ~(~0, Oz)~(o, Oy)~(~,, Oz). 

This expression may also be useful because it contains 
only rotations around the fixed axes of the initial 
coordinate system. 

The minimizations were performed with the program 
STEPIT written by J. P. Chandler, available under 
Number Q.C.P.E. 66 from the Quantum Chemistry 
Program Exchange (Chemistry Department, Room 
204, Indiana University, Bloomington, Indiana 47401, 
U.S.A.). 

3. Results and discussion 

The purpose of our study was twofold. First, it was 
necessary to check the validity of our formulae for the 
calculation of the intermolecular energy: this implied 
the computation of energy for crystals of which not 
only the structure but also the internal energy (sub- 
limation energy) were known. We took methane, 
carbon dioxide, benzene and nitrobenzene. For the 
last, we could not find an experimental value of the 
sublimation energy, but a catalogue of molecular struc- 
ture increments (Bondi, 1963) allows an evaluation. 
Actually nitrobenzene was treated mainly in connexion 
with our second purpose, namely to compare the 
relative configurations of molecules in binary com- 
plexes on the one hand and in crystals on the other: 
being highly polar, nitrobenzene was a useful com- 
plement to benzene, and it supplied a structure (parallel 
layers of almost coplanar molecules) much more 
similar to that &the  adenine crystal than benzene does; 
thus some general features could be expected to appear 
from a comparison between nitrobenzene and adenine. 

According to the remark in § 2-(B)-(a) above, we 
did not attempt to evaluate the third-order terms for the 
polar molecules (CO2 and C6HsNO2). This was done 
for methane, which is a favourable case (practically 
no net charge and spherically symmetric) where only 
the so-called 'triple dipole' term, analogous to the 
second-order dispersion (Axilrod, 1951 ; Kihara, 1958: 
Kestner & Sinanoglu, 1963), needs to be calculated. 
Benzene will be discussed below in §(C). 

(A) Crystal of  methane 
The analysis of solid methane gives a face-centred 

cubic lattice, with a= 5.89 A, There are four molecules 
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in the central cell, with their C atoms at the points 
(0; 0; 0); (a/2; a/2; 0); (0; a/2; a/2); (a/2; 0; a/2). 
Since the exact orientations of the molecules are not 
well known (Kitaigorodskii, 1961 a,b; see however 
Kihara & Koba, 1959), we tried several orientations; 
we give the results for the most favourable. The frac- 
tional coordinates for the first molecule are: C(1) (0; 0; 
0); H(1) (0; 0; 0.1834); H(2) (0; 0.1730; -0.0604); 
H(3) (0.1497; -0.0864; -0.0604); H(4) (-0.1497; 
-0.0864; -0.0604). The three other molecules are 
deduced from the first by symmetry with respect to the 
points (0; a/4; a/4); (a/4; 0; a/4); (a/4; a/4; 0). We took 
a net charge equal to 0.02 on each H atom and -0 .08 
on the C. These charges may be too small (a calcula- 
tion according to Del Re's method gives values twice 
as large: 0.04 on H and -0 .16  on C). Moreover, if we 
take 4.5 x 10 -34 e s u  c m  2 for the octopole moment of 
CH4, according to Stogryn & Stogryn (1966), and 
C-H = 1"09 •, it will be necessary to put a charge 0.376 
on the H atoms (and - 1.504 on (2) in order to repro- 
duce this octopole moment: these values are too high 
and simply show that the octopole moment must not be 
reproduced from the net charges only. Anyway, the 
electrostatic and polarization energies are completely 
negligible in the case of methane: we found an electro- 
static energy 0.25 x 10 -4 kcal/mole and a polarization 
energy -0 .14  x 10 -2 kcal/mole (thus, even with a value 
multiplied by 10 for the net charges, i.e. electrostatic 
and polarization energies multiplied by 1 0  2 , w e  would 
still obtain respectively only 0.25x 10  - 2  and -0 .14  
kcal/mole). 

The three-body contribution (third-order term in the 
perturbation theory of intermolecular forces), repulsive 
in this case, was assumed equal to 7 % of the dispersion 
energy (Kestner & Sinanoglu, 1963). The experimental 
value of the sublimation energy ( -  2.51 kcal/mole) was 
corrected by taking into account the zero-point energy 
evaluated by Kihara & Koba (1959) to be 0.48 kcal/ 
mole, hence the value -2 .99 for the minimum of the 
potential curve. 

The different energies are collected below for the 
crystal of methane: 

experimental -2.99 kcal/mole 
calculated to -3.15 kcal/mole 
second order 
calculated to -2.87 kcal/mole. 
third order 

The agreement between calculation and experiment 
is quite satisfactory for checking the program of cal- 
culation of energies. 

We have also tried to use this program to find the 
best position for the methane molecule, which is not 
known exactly. For this trial, we first start from the 
initial position obtained by performing a rotation 
(+45 ° around Oy) on the molecule defined at the 
beginning of the present section. The total energy (up 
to the second order) obtained for this initial position 

is -2"95 kcal/mole, a value which is not very far from the 
energy obtained previously (-3-15 kcal/mole). When the 
minimum is reached, we get an energy of-3.177 kcal/ 
mole, very close to the value -3.15 kcal/mole, although 
the position is clearly different: coordinates of the first 
molecule: C(1) (0.0001; -0.0001; 0); H(1) (0.0681; 
0.1558; 0.0683); H(2) ( -  0.1802; - 0.0063; 0.0316); 
H(3) (0.0311; -0.0058; -0.1801); H(4) (0.0815; 
-0.1422; 0.0815). 

We also performed a minimization with the position 
defined at the beginning of this section as the initial 
position. We obtain a minimum energy of -3.20 kcal/ 
mole (up to the second order), for a position still dif- 
ferent from the previous ones: coordinates of the first 
molecule: C(1) (0; 0.0270; 0.0187); H(1) (0.0405; 
0.0270; 0.1976); H(2) (-0.0134; 0.2; -0.0402); H(3) 
(0.1326; - 0.0594; - 0.0733); H(4) ( -  0.1594; - 0.0594; 
-0-0071). 

The energy minima obtained by the calculations 
are very close, and we can deduce that it is difficult to 
know the exact position of the molecule in the cell. 
This agrees with experiment (see e.g. Kitaigorodskii, 
1961b): the molecules undergo almost free rotation 
already at very low temperatures, so that the experi- 
mental data give only the position of the centre of the 
molecule and no special orientation. 

(B) Crystal of  carbon dioxide 
This crystal has a face-centred cubic lattice [cf. 

Kihara & Koba (1959) for indications about the 
detailed structure]; a=5.54 A (extrapolation at 0°K 
according to Kitaigorodskii, Mirskaya & Nauchitel 
(1970). We used the net charges 0.6652 on the C and 
-0.3326 on each O, which reproduce the experimental 
quadrupole moment Q=4.1 × 10 -26 e s u .  c m  2 (Kitai- 
gorodskii et al., 1970; Stogryn & Stogryn, 1966). For 
the experimental sublimation energy, Giauque & Egan 
(1937) give -6.44 kcal/mole (evaluated for 0°K) (-6.03 
measured at 195 ° K). 

(1) Experimental configuration 
We obtained for the total energy and its various 

components the values given in Table 1. As generally 
found, the atom-atom formula gives better results 
(relative error of - 10 %) than the bond-bond formula, 
essentially because the dispersion term is larger. We 
have not tried to evaluate the third-order terms. 

Table 1. The total energy and its components 
Polariza- Disper- Repul- 

Electrostatic tion sion sion Total 
Atoms -2.51 -0.21 -8.78 5.70 -5.80 
Bonds -2.51 -0.32 -8-04 5.70 -5.17 

(2) Minimization trials 
We shall now give the results (using atom-atom 

formulae) of several partial minimizations. 
In all cases, only molecule (1) (whose C atom lies at 

the origin) is moved freely; the other molecules (2, 3, 4) 
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are deduced from (1) by the symmetry operations of the 
crystal. 

(I) The lattice lengths (a,b, c) vary, while (cqfl, 79 and 
the molecule at the origin are kept fixed. 

(II) The cell angles (~,fl,~,) vary while (a,b,c) and 
molecule at the origin are kept fixed. 

(III) With the cell parameters fixed, molecule (1) is 
displaced from its crystalline position (ternary axis of 
the cubic cell): it is placed along Oz and then left free 
to move in the cell. 

(IV) (a, b, c), (e, fl, ),), (¢p, 0, r/) kept fixed, (7"1, T2, 
T3)  left free. 

The results of these different trials are given in Table 
2 with the different variable parameters and their 
values before and after minimization. 

When we observe the results of the different calcula- 
tions, the striking character is the great stability of the 
crystalline geometry: so, when the molecule is placed 
very far from the crystalline orientation the minimiza- 
tion procedure brings it to this observed orientation 
and it seems that this minimum is the only one be- 
cause the variation of the different parameters of the 
cell is not very important and the same minimum energy 
is reached in the different cases studied. 

Thus the crystal of carbon dioxide has a very stable 
geometry and the minimization procedure actually 
seems to give the experimental cell parameters and 
crystalline position whatever the values initially chosen. 

It is interesting to note that our absolute minimum 
( - 6 . 1 8  kcal/mole, obtained for a=5 .66 /k ,  slightly 
larger than the experimental value a=5 .54 /k )  is 
significantly closer to the experimental value ( - 6 . 4 4  
kcal/mole) than the value obtained directly for the 
experimental a = 5.54 .&, namely - 5.99 kcal/mole: the 
relative error reduces from - 7 % to - 4 %. 

(C) Crystal of benzene 
The crystal structure was taken from Cox (1958). It 

is interesting to note the difference between the cell 
dimensions at two different temperatures. For  the cal- 
culations, we took the cell parameters at - 3 ° C :  a =  
7.460, b = 9.666, c = 7.034 A in an orthorhombic crystal 
where ~ = f l =  y = 90 °. 

As concerns the atomic net charges we took - 0 . 1  
for C and +0.1 for H. The Del Re method gives 

respectively -0 .053 and + 0.053, but the anisotropy of 
the C atoms (the Slater exponent of the P,t orbital is 
smaller than that of the p,  orbitals, which expresses 
that the p~ orbitals are more diffuse than the p~ ones in 
benzene) gives rise to supplementary atomic quadru- 
pole moments on these atoms, and the sum of these 
moments as evaluated by Mantione (1969 a,b) is of 
the same order of magnitude as the quadrupole 
moment of the Del Re charges (namely 3 x 10 .26 esu 
cm2). Hence the total resulting moment (6 x 10 -26 esu 
cm 2) may be reproduced by approximately doubled 
charges. The experimental values of the quadrupole 
moment of benzene are, unfortunately, very different 
according to the method used (Mantione, 1971, part 2, 
chap. III, § 1, p. 69): their absolute values vary from 
3"6 x 10 .26 e s u  c m  2 (microwave line broadening: Hill & 
Smith, 1951; Smith, 1956) to 34.86 esu cm 2 (diamag- 
netic anisotropy: Daiby, 1963) with intermediate 
values of 12 to 16 x 10 -26 esu cm 2 (analysis of virial 
coefficients: De Rocco & Spurling, 1967). Stogryn & 
Stogryn (1966) give only the smallest value. 

The heat of sublimation (enthalpy) is about 10.3 
kcal/mole in the temperature range - 5 8  to - 3 0 ° C  
(Hamilton Jones, 1960). If we accept that A(PV)= 
RT (=0.426 kcal/mole at - 5 8 ° C  and 0-482 kcal/mole 
at - 30°C)  we obtain the experimental sublimation 
energy AE=AH--A(PV)  in the range 9"82 to 9"87 
kcal/mole. 

The calculation of the crystalline energy gives - 12.1 
kcal/mole at second order, and -11 .15  kcal/mole 
when adding a third-order term evaluated as 7% of 
the dispersion energy (with the polarization and dis- 
persion energies calculated from bond contributions 
instead of atom contributions, these values become 
respectively -9 .57  and -8.75) .  These results are in 
satisfactory agreement with experiment. 

For comparison, we also calculated binary interac- 
tions in various geometries. We have obtained by 
various geometric transformations four positions for 
which we have calculated the different interaction 
energies. 

The first benzene molecule is placed as indicated in 
Fig. 1. The second molecule was obtained by rotating 
the first molecule in some definite manner (four types 
of rotations were tried) and then translating the rotated 

Table 2. Crystalline energies in carbon dioxide and variations of the diff'erent veriables used for the minimizations 
(carbon dioxide) 

Energy a b c ~ B y ~a 0 ~ 7'1 T2 T3 
(kcal/mole) 

I - 5.99 5-54 5"54 5"54 90 90 90 0 0 0 0 0 0 
-6-18 5"66 5.66 5.64 

II - 5.99 5"54 5.54 5.54 90 90 90 0 0 0 0 0 0 
- 5.99 90 90 90 

III - 3.98 5.54 5.54 5.54 90 90 90 0 - 54.73* - 45* 0 0 0 
--5.99 0 0 0 

IV - 5"99 5.54 5"54 5.54 90 90 90 0 0 0 0 0 0 
- 6.00 0.008 0.008 0.008 

* These values of 0 and ~¢ correspond to the molecule collinear with Oz (54.73 =arc cos 1/1/3 is the angle of the ternary axis 
with Oz; ~o remains arbitrary since the molecule is linear). 
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molecule; all combinat ions of  the following transla- 
tions were used: 

along Ox (A)- 0.0 0.5 1.0 1-5 
along Oy (A): 0.0 0.5 1-0 1.5 
along Oz (A)" 4.8 5.0 5.2 5.4.  

Y~ 

4 

3 5 X 

2 

Fig. 1. Geometry and atom numbering of the benzene molecule. 

tie 

o 

N 
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The four types of  relative orientations that  we con- 
sidered were: 

(I) no rotat ion at all; in this case the translations 
along Oz vary from 3.2 to 5.4 A with an interval of 
0-2A.  

(II) rotat ion by 90 ° with respect to Oy [this makes 
the two bonds (2', 3') and (5', 6') of the second molecule 
parallel to Oy (1,4) of  the first]. 

(II[) rotat ion by 90 ° with respect to Ox [this makes 
(1' ,4 ')  of  the second molecule perpendicular  to the 
plane xOy of the first, the plane of  the second molecule 
being parallel to Oy (1,4)]. 

(IV) the same rotat ion as (III) followed by a rota- 
tion by 90 ° with respect to Oz [(1',4') is still perpen- 
dicular to xOy, but  now the plane of  the second 
molecule is parallel to Ox]. 

In Table 3, we give, for each of these orientations, 
the lowest energy value and the translat ion for which 
it was obtained. 

Table 3. Energies of the b&ary &teractions and crystal- 
line energy of benzene 

Angle of rota- 
tion and axis 

I 0 ° 
II 90°/Oy 

III 90°/Ox 
IV (90°/Ox) 

followed 
by (90°/Oz) 

Crystal: 
interaction be- 

tween molecules 
(1) and (4) 
(90°/Oy) 

Translation 
along along along Minimum value 
Ox Oy Oz (kcal/mole) 
1.5 1.5 3.4 -2.45 
0 1 4"8 - 2"47 
0 0 5 -2"95 
0 0 5 -2"25 

0 1"1 4"99 --2"31 

~ o o (4) o 

0~---~0 0 
C3) (2)  

(b) 
/ 

° ' [  (4) 0 0 (I) °~.~_~...,:--~N---° 
I .i"%_ .-~", ~ " ' ~ ' 7 " ~  l 

• ,_ _ = , . , : . . . j  - ~ , . _ . . > ~  

N ""<'-.N b 

(c) 

Fig. 2. Geometry of the four molecules in the cell of the nitro- 
benzene crystal. (a) Orthogonal projection on the bc plane. 
(b) Orthogonal projection on the ac plane. (c) Orthogonal 
projection on the ab plane. 

These energy values are not very far f rom one 
another.  The lowest one is not  obtained when the two 
molecules are parallel (orientation I), but  when one of  
the two molecules is perpendicular  to the other with an 
H a tom directed towards the plane of  the first mole- 
cule (orientation III). 

The crystalline geometry corresponds closely to 
another  orientat ion (If): molecule (4) (Cox, 1958) has 
its plane perpendicular  to that  of molecule (1), with a 
bond parallel to it, and its centre has coordinates 
(0; 1-1; 4.99) in the coordinate system at tached to 
molecule (1) (according to Fig. 1). 

It is interesting to note that  in the crystal, the mole- 
cules are in a relative position not  very far from posi- 
tion (III) (absolute minimum).  It seems possible that  
before crystallization a binary complex (Ill) is formed:  
when different molecules come around this group, 
their influence on the first complex makes the second 
molecule turn around its axis by 30 ° . This is not  an 
impor tant  rotat ion and we may consider benzene as 
somewhat  similar to adenine in the sense that  the 
crystalline configurations are all different from that  
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of the binary minimum but at least one of them is not 
very far from it. 

Anyway, the minimum values obtained for the dif- 
ferent binary complexes do not give a very sharp 
minimum and a real minimization would be necessary 
in this case in order to obtain the exact configuration 
of the minimum (but this information would not be 
very interesting owing to the shallowness of this 
minimum). 

(D) Crystal of  nitrobenzene 
The crystal structure (Fig. 2) was taken from Trotter 

(1959); it corresponds to the temperature -30°C.  We 
could not find an experimental value of the sublimation 
enthalpy (or energy); Hamilton Jones (1960) gives 
about 20 kcal/mole for AH of the three isomers of 
dinitrobenzene (ortho: 20"7; meta: 19.4; para: 21.2). 
Bondi (1963) gives a catalogue of molecular structure 
increments; with AH(C6H5) ~ 9 and AH(. NO2)  = 6.8, 
we get A H ~  15.8 kcal/mole hence A E "  15.3 kcal/mole. 

The atomic net charges [Del Re method for a 
charges, Hiickel method for zc charges, see section 
2(A) (a) above] are [we label C(1) the atom bonded to 
N]: C(1) (0-172); C(2) and C(6) (-0.006);  C(3) and C(5) 
(-0-053);  C(4) (-0-023);  N (-0-006);  O (-0-146) 
each; H(2) and H(6) (+0.054); H(3), H(5) and H(4) 
(+0.053). With the atomic coordinates of the crystal 
(see below), these charges give a dipole moment/z = 
0.796 e A=3.82  Debye, in good agreement with the 
experimental value p=3.93 Debye (McClellan, 1963). 

(a) The crystalline parameters for nitrobenzene at 
- 3 0 ° C  (Trotter, 1959) are a=3.86, b=11.65, c=  
13.24 A, fl=95°35. 

The calculation of the total energy of the crystal 
gives the following contributions: 

electrostatic - 1.95 kcal/mole 
polarization - 0.42 
dispersion - 20.40 
repulsion + 6.66 
total - 16.11 

(total + third order ( -  7 % of dispersion): - 14.69). 
(b) It is interesting to note that the molecules are 

almost parallel in the crystal: so we have made calcula- 
tions of binary complexes where the molecules are 
exactly parallel. When one molecule is translated over 
the other, the minimum value of the energy is obtained 
when the two molecules are in the relative position 
indicated in Fig. 3 and with a vertical distance of about 
3.4 A. This position is the best with respect to the 
electrostatic energy, because the dipoles are antiparal- 
lel. The rings are not superimposed because of the 
electrostatic energy. 

The different contributions are: 
electrostatic - 1.47 
polarization - 0.35 
dispersion - 7.86 
repulsion + 2.92 
total - 6.76 kcal/mole. 

(c) In order to compare the configurations in the 
crystal with the binary complex just considered, we 
give in Table 4 the interactions of a molecule [(2) of 
cell 0,0,0] with all neighbour molecules in the same 
plane (cells 0, 0, 0; 0,1,0; 0,1,1 ; 0, 0, l) and in the 
planes above (cells 1,0,0; 1,1,0; 1,1,1 ; 1,0,1) and 
below (cells - 1,0,0; - 1,1,0; - 1,1,1 ; - 1,0, 1). We 
give the electrostatic term and the total energy with 
polarization energy excluded (because it is not pair- 
additive). We see that all these interactions reach at 
most about one half of the energy corresponding to the 
binary minimum described in (b); it must be empha- 
sized that the superimposed molecules [(2) in cells 
0,0,0 and 1,0,0 or - 1,0,0] being deduced one from 
the other by a translation, have their dipoles parallel 
(and a repulsive electrostatic energy); thus, even for 
them, the configuration is very different from that of 
the binary minimum (b). We may conclude that, in the 
case of nitrobenzene, the requirement of having a mini- 
mum energy for the crystal results in rather close pair 
energies, all of them markedly smaller than the energy 
of the binary minimum energy. This situation is similar 
to that encountered for the cytosine crystal, as men- 
tioned by Caillet & Claverie (1974), and contrasts with 
that for adenine (Caillet & Claverie, 1974) and for 
benzene, for which one of the pair configurations found 
in the crystal is not very different from the configura- 
tion of a binary minimum. 

(d) Finally, we have performed minimization calcu- 
lations with a modified crystal where the first molecule 
lies exactly in the plane yOz. In all these minimization 
calculations, molecules (2,3,4) were always deduced 
from the first by the symmetry transformations of the 
crystal. 

In Table 5 we give for each case two lines of results: 
on the first the value of the energy and the different 
parameters before minimization, and on the second 
the corresponding values after the minimization (when 
a parameter is kept constant no value is given on the 
second line). 

The crystal position is taken as reference position, 
so the Euler angles are given with respect to this posi- 

@ 
i ~ 1 J l  I ~ , ~  a ~  I 

r .2 

× 

Fig. 3. Geometry of the minimum energy configuration for the 
binary complex of nitrobenzene. 
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tion; the molecule placed exactly in the yOz plane cor- 
responds to 

~o=283.51 ° 0=21.40 ° ~,=98.07 °. 

We performed the following minimizations: 
(I) Variation of the cell parameter a (the three 

angles are equal to 90 ° ) 
(II) Variation of a and ft. 
(III) Variation of a, b and c. 
(IV) Variation of a and ~, 0, ~, (the Euler angles of 

the molecule). 
(V) A complete minimization by using as initial 

values of the parameters those obtained from the 
previous minimization (IV). 

In minimization IV (a, ~,0,~ variable) the energy 
obtained after minimization is relatively low and cor- 
responds to molecules not parallel as in the preceding 
minimizations. The electrostatic energy is better in this 

case and it is probably the reason why the molecules are 
twisted out of the yOz plane in the real crystal. 

When all the variables of the cell and of the molecule 
are left free (case V) the minimization procedure 
results in a minimum energy slightly lower than the 
crystalline energy already calculated, although the 
configuration is clearly different (-16-48 up to the 
second order, and -14.7 with the third-order contri- 
bution evaluated as - 7  % of the dispersion energy). 

(VI) This unexpected result makes it necessary to 
perform a minimization with the experimental crystal- 
line configuration as a starting point: this actually 
gives a minimum for a very slight displacement, and 
the value of this minimum (-16.65 kcal/mole, and 
-14.97 with the third-order correction) is actually 
lower than the previous one. 

(VII) Finally, starting from the experimental values 
of the cell parameters and molecule (1) in the plane yOz 

Table 4. Energies of interaction of molecule (2) of the central cell (0, 0, 0) of a crystal of nitrobenzene (Fig. 2) with 
different molecules taken in the cells around the central cell 

In  each cell, molecule  (1) cor responds  to the coordinates  given by Tro t te r  (1959) in his Table  2. Molecule  (2) is deduced  f rom (1) 
by an inversion with respect to the point  (0,½,½). Molecule  (3) is deduced  f rom (1) by a screw t rans format ion  ( rota t ion 180 ° 
a r o u n d  the b inary  axis parallel  to b and  passing at point  (0,0,¼), fol lowed by a t ranslat ion ½ along this axis. Molecule  (4) is 

deduced  f rom (3) by the same inversion as above [center (0, ½,½)]. All energies are  expressed in kcal /mole.  

Molecule  (2) o f  the cell (0,0,0) with 
Cell (0, 0, 0) (0,1,0) (0,1,1) (0,0,1) 
Molecule  (4) (3) (4) (1) (3) (1) 
Electrostat ic  energy - 0.70 - 0.07 - 0.7 - 0.46 - 0.07 - 1.12 
Tota l  energy wi thout  polar izat ion - 1.76 - 1.36 - 1.76 - 1.13 - 1.36 - 3 . 2 1  

Cell (1,0,0) (1,1,0) (1,1,1) (1,0,1) 
Molecule  (2) (4) (3) (4) (1) (3) (1) 
Electrostat ic  energy + 1.14 , 0 . 1 1  +0-008 - 0 . 1 1  +0 .45  - 0 - 7 0  - 0 . 3 3  
Tota l  energy wi thout  polar izat ion - 3-53 - 0.225 -- 0-167 -- 0-225 - 0-274 - 1 "67 - 0"67 

Cell ( -  1,0,0) ( - 1 , 1 , 0 )  ( - 1 , 1 , 1 )  ( - 1 , 0 , 1 )  
Molecule  (2) (4) (3) (4) (1) (3) (1) 
Electrostat ic  energy + 1.14 - 0.78 - 0.70 - 0.78 - 0.05 + 0.008 - 1.29 
Total  energy wi thout  polar izat ion - 3 . 5 3  - 1.98 - 1.67 - 1.98 - 0 - 1 1  - 0 . 1 6 7  - 2 . 5 6  

Sum of  the different total  energies wi thout  polar izat ion - 2 9 . 3 3  
½ sum cor responding  to the energy for  one molecule  - 14.66 

Tota l  energy for  the crystal  wi th  the different cont r ibut ions :  

Electrostat ic  Polar izat ion Dispers ion Repuls ion 

- 1-95 - 0-42 - 20.40 + 6-66 
Total  

-16-11  

T a b l e  5. Energies obtained for the different minimizations performed with nitrobenzene 
Energy  

(kcal /mole)  a (/~) b (/1,) c (/~) ~ fl y tp 0 ~ T1 7"2 7'3 
I +15"36 3"86 11"65 13"24 90 90 90 283"51 21"40 98"07 0 0 0 

+ 13"22 3"35 
II + 15"36 3"86 11"65 13"24 90 90 90 283"51 21"40 98"07 0 0 0 

+ 10"97 3"45 69"98 
I I I  + 15"36 3"86 11"65 13"24 90 90 90 283"51 21"40 98"07 0 0 0 

- 10"52 3"40 12"38 14"20 
IV + 15.36 3-86 11"65 13.24 90 90 90 283.51 21.40 98-07 0 0 0 

- 14.11 3.73 333.25 8.13 73.85 
V -14 .11  3-73 11.65 13.24 90 90 90 333.25 8.13 73.85 0 0 0 

--16.48 3.80 11.42 13.64 90 112.65 90 333-79 8.13 73.85 0.1885 0 0 
VI - 1 6 " 1 0  3.86 11"65 13.24 90 95.58 90 0 0 0 0 0 0 

- 16-65 3.80 11.42 12.85 90 93.41 90 0 0 0 0.0443 0 0.1287 
VII  +15-25 3.86 11"65 13"24 90 95.58 90 283.51 21.40 98"07 0 0 0 

- 15-21 106 0.47 0.24 0.14 0"01 
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a minimization was performed with respect to fl and 
the parameters (~0,0, 9,; Tx, T2, 7"3 of molecule (1). The 
resulting orientation of molecule (1) is still quite dif- 
ferent from those found previously (V and VI); true 
enough, the parameters a, b, c, c~, ?, were not allowed to 
vary, but the previous results [compare the partial 
minimization (IV) with the complete one (V)] make it 
unlikely that important changes of the orientation of 
molecule (1) would occur by leaving the parameters 
a, b, ¢, e, y free to vary. Thus, minimization VII strongly 
suggests the existence of a third local minimum. 

4. Conclusion 

The first purpose of this work was to check whether the 
simple formulae developed in our laboratory for the 
calculation of the interaction energy between two mole- 
cules could be applied with sufficient reliability to the 
study of crystals. The results in §3 which concern four 
rather different molecules (CH4, CO2, C6H6, C6HsNOz) 
seem to indicate that this is actually the case: 

(1) The energies calculated for the experimental 
crystalline configuration are in satisfactory agreement 
with experimental values of the sublimation energy. 

(2) When a minimization has been performed by 
starting from the experimental position (this we did 
for CO2 and C6HsNO2), a minimum very close to this 
position has been obtained. This result indicates that 
the method may be useful not only for getting energy 
values but also for analysing the geometry of the crystal 
(orientations of the molecules with respect to each 
other). 

A second purpose was a comparison between the 
relative orientation of two molecules in the crystal and 
in the binary complex. A thorough analysis has been 
given in a previous paper for adenine (Caillet & 
Claverie, 1974). The results of the present work confirm 
the previous ones: in the case of stacking interactions, 
which have a weakly specific geometry, there is no 
strict relationship between the relative configurations 
of two molecules in the crystal and in the binary com- 
plex. In some cases (adenine) there exists in the crystal 
one binary configuration not too different from that of 
the binary complex; but in other cases (cytosine, 
nitrobenzene) there is no such configuration to be 
found in the crystal. As concerns benzene, its binary 
minimum configuration is not well defined (very shal- 
low minimum) so that the problem of comparing 
binary configurations for two molecules and for the 
crystal practically loses its meaning. 

Finally, the present study supports the view that, 
at least for not too simple molecules, several local 
minima may exist on the energy hypersurface besides 
the one corresponding to the experimental configura- 
tion (we found a single minimum for CO2, but two and 
probably three for C6HsNO2). A similar result has been 
reported by Ahmed & Kitaigorodskii (1972) who 
found two minima in their study of the crystal structure 
of 3,6-diphenyl-s-tetrazine. 
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Univalent (Monodentate) Substitution on Convex Polyhedra 
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P61ya's enumeration theorem has been used to evaluate, by computer, the numbers N of distinct 
configurations (= positional isomers) produced by univalent (monodentate) substitution at the vertices 
of convex polyhedra of crystallographic or stereochemical interest. The values of N are tabulated for a 
large variety of polyhedra of up to V= 120 vertices and for up to V kinds of structureless substituents. 
The N have been evaluated not only for the maximum point-group symmetry of each polyhedron but 
also, for V< 24, for all the subgroup symmetries of the maximum point group. For V> 24 only polyhedra 
of cubic and icosahedral symmetries are included. An example shows how the tables of N can be used 
to enumerate pairs of enantiomorphs. The effect of symmetry on N for large values of V is examined. 

a 

d *  

cg 1 

d 

E 
F 
i 

m 
ma 

md 
mh 

N 

Symbols and abbreviations X 

axial digyre (see text) p(G) 
Archimedean polyhedron (isogonal) p.g. 
Catalan polyhedron (dual to d ,  isohedral) ~@{ 
number of all non-isomorphic convex poly- v', v" 
hedra of maximum p.g. symmetry Ct and a V 
given V ~" 
diagonal digyre (see text) Z 
dual polyhedron 
number of edges A 
number of faces 
centre of symmetry; inversion H 
Kasper polyhedron 8-2 
mirror plane 
axial mirror plane (also in combinations maa 
and mad; see text) 
diagonal mirror plane (also in mdd; see text) 
horizontal mirror plane (also in combinations 
mha and mhd; see text) 
number of distinct configurations 
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number of all non-isomorphic convex poly- 
hedra of a given V 
order of the point group G 
point group 
Platonic polyhedron 
nonequivalent (vertical) mirror planes 
number of vertices 
vertex-figure derivative 
cycle index 
number of Z-isomorphic classes 
deltahedron (Freudenthal & van der Waerden, 
1947) 
partition 
running number of polyhedron of V=8 and 
maximum p. g. symmetry in Table 5 
running number of polyhedron of V=8 ob- 
tained from, or related to, 8-2 by lowering the 
p.g. symmetry from the maximum possible for 
8-2, 32, to 20 
running number of a p.g. in Table 3 

A problem of some importance in various branches of 
science is the determination of the number N of dis- 
tinct~ positional isomers that can be obtained by 

:l: Distinct positional isomers are not congruent with respect 
to rotation. 


